Angela O'Callaghan, Ph.D. Social Horticulture Specialist

Plant Nutrition & Fertilizers

Master Gardener Training October 24, 2017

Pre-assessment

- (select one) Two parts per million of boron is (essential/toxic) to many plants
- 2. Tip burn indicates (choose one)
 - a) iron deficiency
 - b) excess water
 - c) excess phosphorus
 - d) insufficient calcium

3. (true or false) Nitrogen promotes plant disease

Cooperative Extension

p. 2

&

 4. (true or false) Potassium deficiency may be confused with salt burn
 5. Two nutrients (there are several) required for healthy leaves are:

Goals of this class

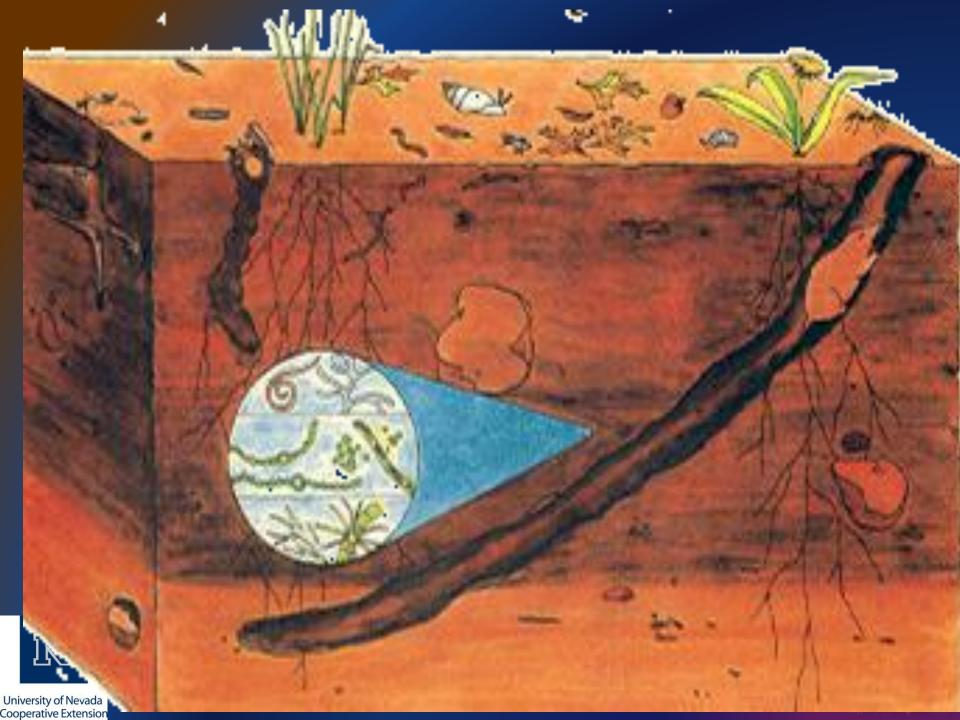
By the end of class, students will be able to:

Recognize the role of nutrients in plant health
Read a fertilizer label

- Recognize common nutrient deficiency symptoms
- Recognize other factors that may confound diagnosis of plant stress

Proper plant nutrition

soil, soil organisms, and


a balance among plant,

the abiotic environment (light, air, water) that surrounds it

O'Callaghan

Nutrient deficiency symptoms Vocabulary

Chlorosis Yellowing of leaves **Interveinal chlorosis** Striping; Leaf tissue between veins turns yellow but veins remain green **Necrosis** drying and death of plant tissue **Stunting** Shortened internodes Abnormal coloration Red, purple, brown colors caused by pigments that serve other functions

O'Callaghan 10/24/2017



Why nutrient deficiencies ?

Insufficient amount
 Unusable form
 Roots damaged
 Poorly adapted plant

O'Callaghan 10/24/2017

from **0** (most acidic, concentrated acid)

to **14** (most alkaline, concentrated base)

Mineral Nutrients

Fertilizers

 Fertilizers are usually labeled either "general (or all) purpose" or are listed for a specific set of plants (e.g. rose fertilizer, cactus fertilizer)

 General purpose fertilizers have different concentrations of nutrients, but will have nitrogen, phosphorus and potassium, listed in that order

Cooperative Extensiom

O'Callaghan

Read the Label

Un

A	DR. Q'S [®] ROSE FOOD 6-12-4 with soil conditioners	
SE	BURANTEED ANALYSIS The Mininger (M) 6.9% 4.30% animumatical inferogen 6.9% 9.0% water solution of topolo 1.0% 1.0% water solution of topolo 1.0% Solution (CO) 4.0% Solution (Table) 1.0% Mongarases (Mn) 0.15% Derived from blood meak, feather meak bone meak, service/wind 1.1% prissphate of potastic, feather case toorase, ferrous solution 1.1%	RO
	ALSO CONTAINS NON-PLANT FOOD INGREDIENTS AS SOIL CONDITIONERS: 3.20% humile Acids (Derved from Leonartike) 1.00% Kaip (Ascelosifulum Nodosum) HOMOGENEOUS - CONTINUOUS RELEASE ORANULES The maint, sale way to food your plants and bring your soil to the at the same time.	
1 A	ALL PORTS AND ALL AND	WITT SOIL COMMITTEE

<image><section-header>

han

"Major", "minor", "micro"

 Terms refer only to the amount a plant needs for survival.

 Nutrients are essential, but some may be toxic at high concentrations

 Different species, at different growth stages, need different levels of nutrients.

10/24/2017 O'Callaghan

The Major Nutrients

Nitrogen (N)
Phosphorus (P)
Potassium (K)

10/24/2017

University of Nevada Cooperative Extensiom

Mobile nutrients

- Translocated from old tissue (bottom of the plant) to new tissue (top of the plant)
- Deficiency symptoms occur first on lower, older leaves
- Mobile nutrients are nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg)
- A plant that is not growing is dying

Cooperative Extensior

O'Callaghan

"minor" and "micro" nutrients

O'Callaghan

Calcium* (Ca)
Iron (Fe)
Magnesium* (Mg)

- * High concentration in desert soils.
- University of Nevada Cooperative Extension

- ♦ Boron* (B)
- Chlorine* (Cl)
- Cobalt (Co)
- Copper (Cu)
- ♦ Manganese (Mn)
- Molybdenum (Mo)
- ♦ Nickel (Ni)
- ♦ Selenium (Se)
- ♦ Sulfur (S)
- ◆ Zinc (Zn)

Immobile nutrients

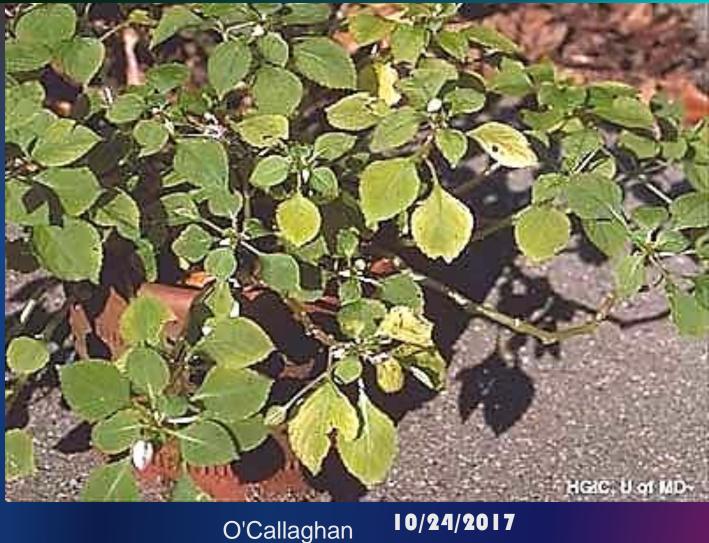
- Deficiency symptoms occur mainly on upper, new leaves.
- Immobile nutrients: calcium (Ca), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), sulfur (S), and zinc (Zn).

University of Nevada Cooperative Extension O'Callaghan

- Nitrogen tends to promote plant disease
- Phosphorus could promote or decrease plant disease
- Potassium tends to inhibit plant disease

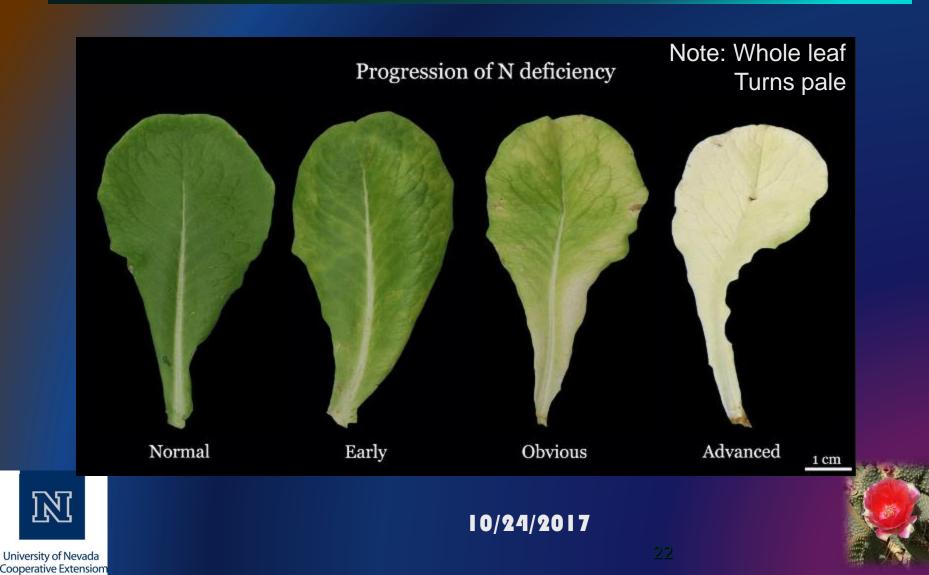
2017

O'Callaghan


Symptoms of plant nutrient problems

O'Callaghan

Leaf chlorosis



Cooperative Extension

21

Nitrogen deficiency

- A major reason leaves develop an overall yellowish cast is lack of *nitrogen*
- But this can also be the result of a lack of the element other nutrients –
- ♦ Or
 - Herbicide interference in nitrogen utilization
 - Plant disease
 - Waterlogged soil

We think of nitrogen for healthy leaves, but nitrogenous compounds are also in leaves, flowers, seeds and roots

> Nitrogen is also in: Proteins

Nucleic acids Chlorophyll (and other color compounds like anthocyanins)

OCallaghan

Obtaining N

Soil organic matter

contains complex N compounds that are broken down by soil microbes & earthworms into usable chemicals (humus).

Nitrogen fixation

Rhizobia = bacteria that form associations with roots of plants called legumes. Many native desert plants are leguminous (mesquite, cassia, acacia, silk tree).

Other bacteria fix N in vicinity of roots but do not form nodules. Plants benefit from their activities.

University of Nevada Cooperative Extension

<u>INI</u>

Rhizobia nodules on legume roots

 Nodules are created by the plant in response to infection

 Only appear on legumes

University of Nevada Cooperative Extensiom Photo credit: Julie Grossman, North Carolina State University

Fertilizers

• General purpose fertilizers have nitrogen. • First number on container In one of three forms "ammonium" (volatile) "initrate" (leaches) "urea" (urease)

University of Nevada Cooperative Extensiom O'Callaghan

Miracle-Gro® Water Soluble all Purpose Plant Food 24-8-16

GUARANTEED ANALYSIS

Total Nitrogen (N)	24%
20.5% Urea Nitrogen	90%
Available Phosphate (P2O5)	16%
Soluble Potash (K2O)	0.02%
Boron (B)	0.07%
Copper (Cu)	
0.07% Water Soluble Copper (Cu) Iron (Fe)	0.15%
0.15% Chelated Iron (Fe)	
Manganese (Mn)	0.05%
0.05% Chelated Manganese (Mn)	
Molybdenum (Mo)	0.0005%
Zinc (Zn)	0.06%
0.06% Water Soluble Zinc (Zn)	

Derived from Ammonium Sulfate, Potassium Phosphate, Potassium Chloride, Urea, Urea Phosphate, Boric Acid, Copper Sulfate, Iron EDTA, Manganese EDTA, Sodium Molybdate, and Zinc Sulfate. Information regarding the contents and levels of metals in this product is available on the internet at: http://www.regulatory-info-sc.com.

KEEP OUT OF REACH OF CHILDREN MANTENER FUERA DEL ALCANCE DE LOS NIÑOS

Scotts Miracle-Gro Products, Inc. 14111 Scottslawn Road Marysville, OH 43041

10/2<u>4/201</u>7

F 1198

30

What's it for?

◆ If a plant has a large amount of N relative to other nutrients, it is probably meant for leaves

University of Nevada Cooperative Extensiom

han

Timing is everything

Applying nitrogen

O'Callaahan

- after a plant has begun flowering can interfere with flower production.
- after a plant has begun fruiting can interfere with fruit ripening.
- after a plant has begun producing a storage organ can stop it from developing.
- ♦ at the wrong time can promote disease.

Cooperative Extensiom

Diseases occur in N <u>deficient</u> plants

especially

- Wilts (caused by blockages of plant's circulatory system)
- Soft rots (caused when pathogen "chews up" plant's cell walls)

O'Callaghan

Nitrogen for disease control and prevention

Fertilize at plant establishment and times of most vigorous growth

Most pathogens prefer one form of N, so use a mixture of forms –Ammonium, nitrate, urea, organic

O'Callaghan 10/24/2017

Over-fertilizing with N

- Excess succulence
- May lead to sulfur deficiency
- May result in disease

O'Callaghan

Leaf Bronzing

A common cause of the purplish tinge affecting leaves is a deficiency of *phosphorus*

Bronzing cont.

Other causes include – Spider mite damage Nematode infection Environmental (e.g. ozone) damage Herbicide damage

Phosphorus - involved in

Reactions that require energy - in a plant (or a person or a bacteria, or any animal or fungus).

Anything related to **reproduction**: flower color, seed set

Root formation and leaf color

Merlot with advanced P deficiency symptoms.

Mint

P Deficiency

Purple on upper and lower leaf surfaces Leaves dark green and smaller than normal - Stunting Plants smaller than normal ✤Dark purple stems

<u>ag.montana.edu/warc/Peppermint%20d9fj¢joney%2</u> toms_files/frame.htm#slide0031.htm O'Callaghan

Streaking on monocots milar to bronzing

10/24/2017

Cell membrane disruptor herbicide (triazolinone) damage → bronzing

10/24/2017

Spider mite caused bronzing on raspberry (below) and soybean

Ozone damage bronzing on bean

GIC, U of MD 10/24/2017

Obtaining phosphorus

Cooperative Extensiom

Pools of phosphorus may exist

But may be unavailable : –When soil pH is too low, tightly bound to soil aluminum When soil pH is too high, tightly bound to calcium. Plant roots readily take up the limited amount of soluble P.

University of Nevada Cooperative Extension O'Callaghan

fungi plus roots.
 hyphae form a huge extension of root system.

many desert plants rely on these associations to obtain phosphorus, as do forest plants, blueberries and alliums.

O'Callaghan

Mycorrhizae

- take up certain elements
- drought resistance • survival after
 - planting
- growth rate
- protect from fungal root pathogens O'Callaghan

University of Nevada Cooperative Extension

o://www.hawaii.edu/scb/images/photos/Fig4_pittosporum.jp**g**0/24/201

Root associations – not the same

Rhizobia ♦ Bacteria Only legumes Only nitrogen fixation ♦ N fixation inhibited by excess N fertilization M O'Callaghan Mycorrhizae Fungus & roots Many plants Many nutrients Disease protection Drought protection

University of Nevada Cooperative Extension

The second number on any container of fertilizer is the phosphorus percentage It may be listed as phosphoric acid ♦ phosphate (Technically, it's neither.)

Cooperative Extensiom

O'Callaghan

Green Light Super Bloom® 12-55-6 with 0.10% Chelated Iron Green Light Super Bloom[®] is a concentrated well soluble plant food immediately available to plants.

Guaranteed Analysis

Total Nitrogen (N) 9% Ammoniacal Nitrogen Available Phosphate (P₂O₅) Soluble Phosphate (P205) 8105 Iron (Fe)

0.10% Chelated Iron (Fe) Derived from Ammonium Phosphate, Urea Monopotassium Phosphate, Iron Lignosulfate

Dissolve in water before using use any pail applicator such as a sprinkling can or pail to plant toop in Plant in pole and truting plants every 10 to 14 date blooming and fruiting plants every 10 to 14 date sure soil is moist before applying Plants in pole and the polying Plants in pots and other containers: Dissolve two TEAspoons Super Bloom antainers

Outdoor flowers and truiting plants in containers, Dissolve or bed areas Dissolve one TABLEspoon Super Bloom[®] in one of the second states of th CAUTION: Keep Out of Reach of Children

Neep Out of Reach of United Internation regarding the contents and internal internation regarding the contents and internal regulatory-into-gl.com

O'Callaghan

Blook

09.13.2007

Flower Food 12-55-6 0.10% Chelated

University of Nevada Cooperative Extension

N

Higher levels of P tend to:

- •increase resistance to bacterial disease
- increase resistance to fungal disease
 increase resistance to viral disease

•Decrease resistance to nematode disease

54

Applying surplus P

Generally not a good idea

- Plants do not use excess P efficiently
- Excess may run off (pollution source)
- Excess may be taken up by fungal pathogens

Best to maintain a balanced fertilizer regime, and try to keep pH lower than ~ 7.5

Cooperative Extension

O'Callaghan

may cause deficiencies of other minerals, e.g. zinc, iron and copper; could be considered "expensive lime" can cause plants to increase uptake of sodium, increasing salinity stress

56

University of Nevada Cooperative Extensiom

ואַנ

O'Callaghan

Browning of leaf margins

Most often due to *potassium* deficiency
Can be an indication of salt damage
Herbicide damage
May also be an effect of spider mites

K deficiency

- Tends to show up as browning along leaf margins
- But in palms, see
 yellow or brownish
 spots

K

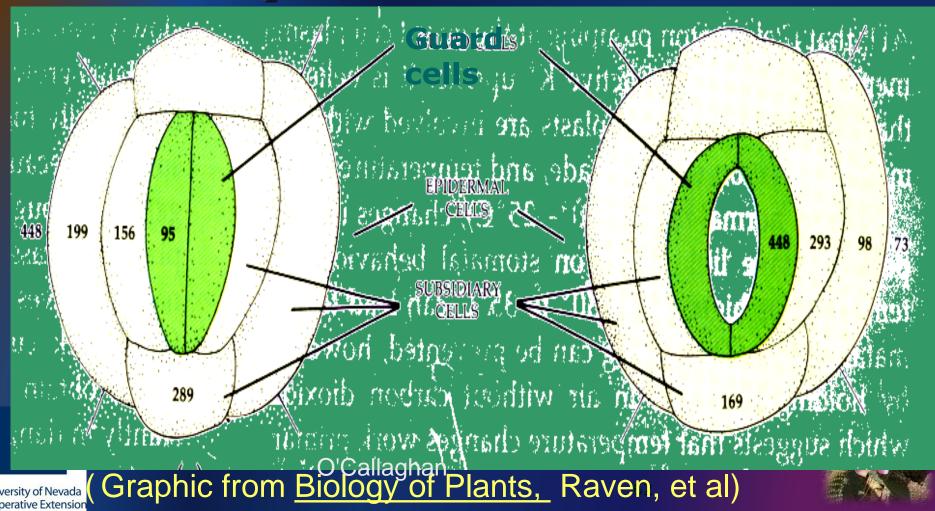
O'Callaghan

But other causes may result in similar symptoms

Herbicide carryover

Salt accumulation

Potassium is essential:


- Water relations
- Maintaining acid/base balance
- Sugar transport (leaves to rest of plant)
- Cell wall structure
 - Maintaining plant stalk strength
- Hormonal action
- Activating enzymes for photosynthesis and respiration
- Flowering and producing fruit
 - Fruit ripening

O'Callaghan

Potassium triggers guard cell action; causes stomata to open and release water vapor, or close to conserve it.

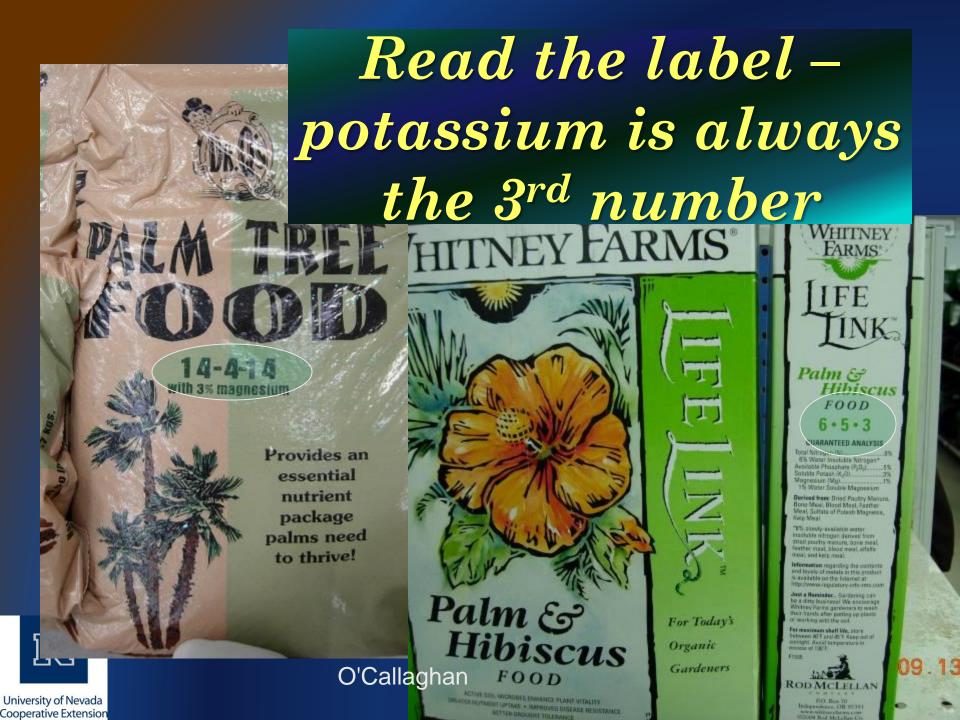
Obtaining potassium

10/24/2017

The soil

Relatively abundant in the desert, except on sandy soils. Some clays are high in potassium at first, but become deficient due to agriculture, erosion and leaching.

If deficient, non-conventional K forms can be added to the soil: cottonseed meal, granite dust, and greensand.


Excess potassium may interfere with manganese uptake.

Cooperative Extensiom

O'Callaghan

K deficiency

May occasionally be confused with symptoms of insufficient nitrogen Photosynthesis decreases K deficient plants tend to have lower resistance to disease Diseases tend to be more severe in K deficient plants

O'Callaghan

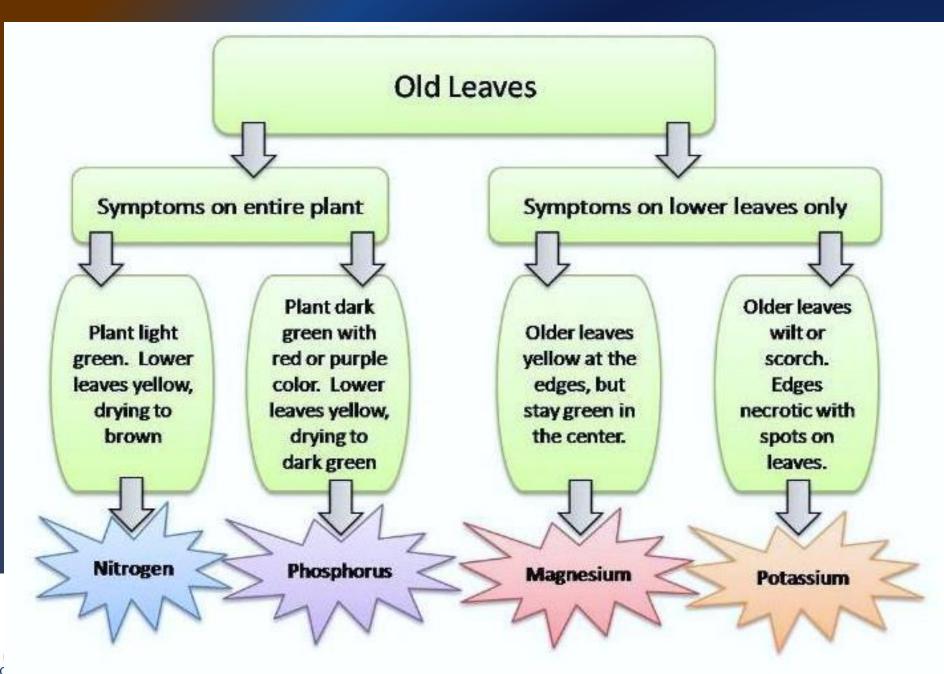
K and disease resistance

Potassium fertilization tends to

Decrease fungal disease (89-33)* Decrease bacterial disease (19-5)* Decrease viral disease (4-5)*

Increase nematode disease (3–6)*

* journal articles where found – where not found



O'Callaghan₆₇

Adding extra K

Probably a waste Pathogens can take up excess K Plant with excess K may be more of a target for pathogens K -more available in high calcium soils

Keep plants well nourished – apply at planting time and at periods of most rapid growth O'Callaghan

O'Callaghan

Interveinal chlorosis

- Caused by
- Nutrient deficiencies(frequently confused)
 - -Iron
 - -Manganese
 - -Zinc
- Photosynthesis inhibition
 Herbicide

University of Nevada Cooperative Extensiom

M

Very common in desert southwest

M n

Interveina l chlorosis

O'Callaghan

Zn

Older green; younger yellow

Cooperative Extension

University of Nevada Cooperative Extension

Iron is essential for

♦ Photosynthesis Proper chloroplast size ♦ N utilization Production of gaseous plant hormone ethylene Fatty acid breakdown (recycling) within plant)

Cooperative Extension

creating and maintaining the proper structure of **chloroplasts**

 Essential for many enzymes, including a key one in photosynthesis

may help roots resist pathogenic nematodes

Zinc

- Proper leaf and petiole development
 Plant hormone *auxin*Production of chlorophyll
- Other deficiency symptoms:
 White bud of corn
 Little leaf
 Premature leaf drop in trees
 O'Callaghan 10/24/2017

University of Nevada Cooperative Extensiom

Amending deficiency

Add iron (if it's an iron deficiency)
Add other nutrient (if another element is lacking)

Cooperative Extensiom

Add micronutrient

Son contraction of Ron & ZINC DEFICIENCY:

cation in 3 month's of societation and the societation of the societat

CAUTIONS

Keep out of the reach of children. Harmful if swallowed Avoid contact with eyes and skin. Store in cool place NOTICE: Buyer assumes all responsibility for safety and use of this product not in accordance with directors and cautions.

GUARANTEED ANALYSIS

0.25

09.13 2007

0.2% Chelated Iron 0.2% Chelated Iron 0.2% Chelated Zinc Woonutrients from Ferric EDTA & Zinc EDTA

University of Nevada Cooperative Extension O'Callaghan

Atrazine drift

10

University of Nevada Cooperative Extensiom

ON THE OTHER HAND

- Deficiency often a result of high pH,
- Long term solution: lower pH
 by adding sulfur (not gypsum).

Cooperative Extensiom

O'Callaghan

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Most acidic; Concentrated acid					N	eutr	ral			Сс		Mo kali ntra b		

10/24/2017

University of Nevada Cooperative Extension

M

How does sulfur lower pH?

$S + H_2O \Rightarrow H_2SO_4$

Sulfur = S Water = H_2O Sulfuric acid = H_2SO_4

O'Callaghan

10/24/2017

85

Material	Chemical Formula	Sulfur (%)	Acidifying Material (lb) Necessary to Equal 100 lb of Soil Sulfur
	S	99 .0	100
oil sulfur alfuric acid (98%)	H ₂ SO ₄	32.0	306
alfur dioxide	SO ₂	50.0	198
ime-sulfur solution	$CaS_x + water$	24.0	417
(32° Baumé) non sulfate	FeSO ₄ · 7H ₂ O	11.5	896
kuminum sulfate	$Al_2(SO_4)_3$	14.4	694

stein fertilizer materials also markedly increase soil acidity when used in large quantities (see page 142).

Un.

Lowering pH

SOIL SULFUR

GUARANTEED ANALYSIS

Sulfur (S)-----90.0% 90.0% Free Sulfur as (S)

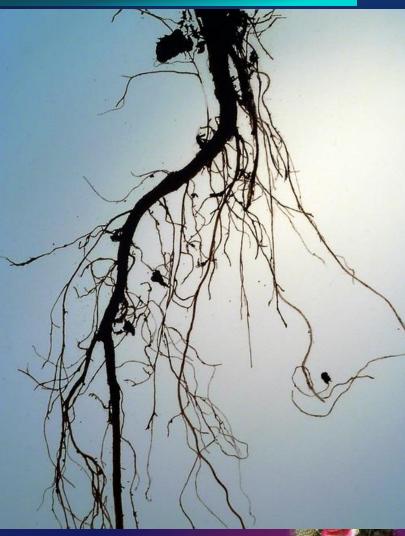
Derived from secondary nutrient sources: Sulfur.

GRANULATED, EASY TO USE.

Soil Sulfur is used to correct alkaline soils, and those with a high pH. An absence of sulfur in the soil is indicated by plant leaves turning yellow. Slow acting, but long lasting. O'Callaghan

APPROXIMATE QUANTITY OF SOIL SULFUR NEEDED TO INCREASE BOIL ACIDITY TO ABOUT pH 6.5

		Sulfur (lb/acre)	
Change in pH Desired	Sands	Loams	Clays
8.56.5 8.06.5 7.56.5 7.06.5	2000 1200 500 100	2500 1500 800 150	3000 2000 1000 300



University of Nevada Cooperative Extensiom

Sulfur's role within plant

 Critical component of many proteins Important in nitrogen ar iron metabolism ◆Essential for auxin production / root elongation

Fruit problems

Production -disrupted by incorrect timing of N application, or boron insufficiency
Development -stunted by lack of K
Ripening - interfered with by lack of K
Blossom end rot - due to early lack of Ca

Blotchy ripening of tomatoes is caused by deficient K

Cooperative Extension

O'Callaghan

Blossom end rot

University of Nevada **Cooperative Extension** 11

O'Callaghan

Tip burn

O'Callaghan

Tip burn is Everywhere!

| 0/24/20 | 7

often caused by Calcium deficiency

Cooperative Extensiom

10/24/2017

95

 \diamond Keeps soil pH high (>= 8.0) Controls stomata opening and closing ♦ Plant defenses Cell membranes and cell division \diamond Cell walls Enzyme activation processes.

Cooperative Extensiom

O'Callaghan

 In humid environments (where rainfall is >10" per year), calcium may be deficient.

However...

In the desert, such as the Las Vegas Valley, calcium is present in the soil ("Caliche").

Even with the large amount of calcium in the soils here, it is still possible to see Ca deficiencies.

University of Nevada Cooperative Extensiom O'Callaghan

Calcium is present in the soil

But needs to be transported to growing tissues


O'Callaghan

Watering

Almost always, **blossom end rot or tip burn is** caused by irregular watering.

(May also be due to using a cultivar that cannot transpire rapidly enough to bring the calcium to the developing tissue.)

Do not add calcium, as this will only increase problems.

O'Callaghan

Leaf deformation

Often due to excess boron
May also result from

insect or mite infestation
Herbicide damage (2,4,D)

University of Nevada Cooperative Extensiom O'Callaghan

Our soils generally have sufficient B; even excessive.

toxicity on tamarillo leaf

On citrus

Cooperative Extension

High pH limits plant uptake of boron

10/24/2017 O

O'Callaghan

2,4 – D damage

University of Nevada Cooperative Extension 102

Leaf Symptoms of Broad Mite Damage on Pepper

University of Nevada Cooperative Extensiom plantpathology.tamu.edu/Texlab/ Vegetables/pep...

10/24/2017

103

Plants need little boron, but...

Necessary for root development
For cell division (walls & membranes)
Involved in the proper development of structures involved in plant fertilization
Necessary for carbohydrate transport

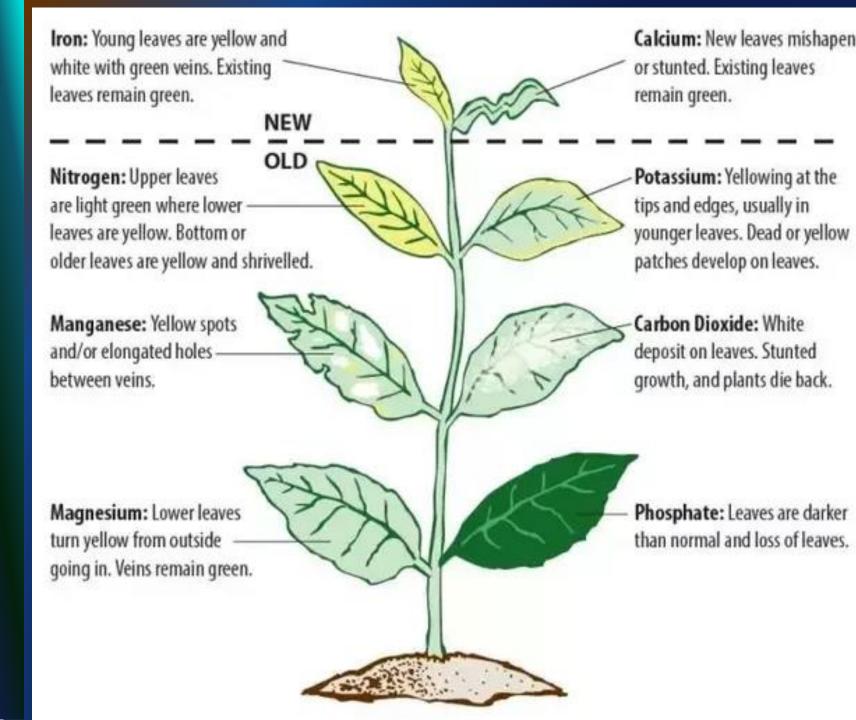
Boron can be toxic at high concentrations (>2 ppm)

Salt? Sun scald? K? B?

Provide adequate nutrition

 Make sure soil is providing proper nutrient levels for plants

- Enrich soil with compost when necessary
- Ensure that pH is appropriate
- Fertilizers supplement what soil provides


Plant Part Nutrient

Phosphorus, Potassium, Boron **≻**Root Potassium, Calcium ≻Stem **Leaf** Nitrogen, Magnesium, Iron, Manganese, Molybdenum, Zinc Flower Phosphorus **≻Seed** Phosphorus, Boron **≻**Fruit Phosphorus, Potassium

O'Callaghan

Diagnosing problems Examine plant for obvious signs and symptoms of insects or disease Find out where plant is located Learn what chemicals were applied in the area of the distressed plants Learn fertilization history Perform Soil test Perform Tissue test O'Callaghan 10/24/2017

University of Nevada Cooperative Extension

Reading a soil analysis report

O'Callaghan

Soil & Plant Laboratory, Inc.

4741 E. Huster Ave, Suite A. Anaheim, CA. 82007 714.582-8777 [phone] 714.303-8575 (ba) www.soliandplantiaboratory.com

SOIL ANALYSIS

Send To:	Project :	Report No :	10-228-0003
UNR Cooperative Extension	Windmill	CustNo :	04401
8050 Paradise Rd.		Date Printed :	08/18/2010
Las Vegas NV 89123		Date Received:	08/16/2010
		Page :	1 of 1
		Lab Number :	05902

Sample Id : Windmill Soil

SATURATION EXTRACT - PLANT SUITABILITY

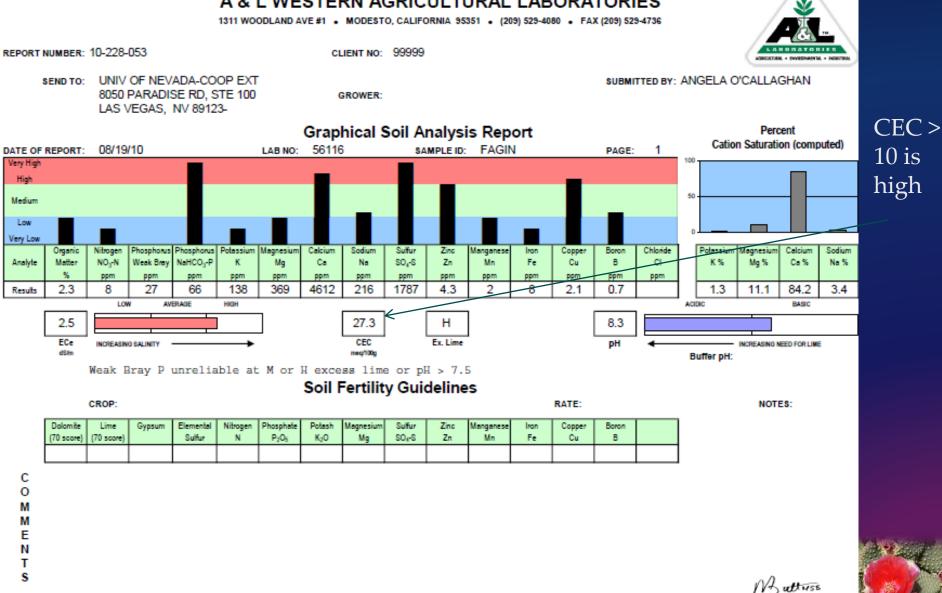
	Result	Effect on Plant Growth							
Test		Negligible	Sensitive Crops Restricted	Many Crops Restricted	Only Tolerant Crops Satisfactory	Few Crops Survive			
Salinity (ECe)	8.7 dSm								
Sodium Advorption Ratio (SAR) *	10.57				T I				
Boron (B)	1.21 ppm								
Sodium (Na)	55.8 migL								
Chioride (CI)									
Carbonate (CC3)									
Bicarbonate (HC C3)					1				
Pluoride (F)					1				

* Structure and water infiltration of mineral sols potentially adversely affected at SAR values higher than 6.

Test	Result	Strongly Acidic	Moderately Acidic	Slightly Acidic	Neutral	Slightly Alkaline	Moderately Alkaline	Strongly Alkaline	Qualitative Lime
pH	7.8 8.0.								High

EXTRACTABLE NUTRIENTS

Test	Description	Sufficiency	SOIL TESTRATINGS				NO3-N	
Test	Result	Factor	Very Low	Low	Medium	Optimum	Very High	NU3-N
Available N	9 ppm	0.3						7 ppm
Phasphanus (P) - Obsen	8 ppm	0.5			1			
Potessium (K)	163 ppm	1.4						NH4-N
Potessium - sat. ext.	3.7 meg.							2 ppm
Calcium (Ca)	2227 ppm	1.4						
Calcium - sat. ext	40.8 meg.							Total
Megnesium (Mg)	177 ppm	0.9						Exchangeable Cations(TEC)
Megnesium - sat. ext	14.9 migL					Г		Carbona (i C c)
Copper (Cu)	0.1 ppm	0.1						130 meg/k
Zinc (Zn)	1 ppm	0.1						130 media
Manganese (Mh)	4 ppm	0.4						
hon (Fe)	9 ppm	0.2			Т			
Boron (B) - sat. ext	1.21 ppm	4.0						
Suite in - and, ext.	63.6 miq.	212						
Exch Aluminum								I


Cu, Zh, Mn and Fe were analyzed by DTPA extract.

PARTICLE SIZE ANALYSIS

University of Nevada Cooperative Extension

"Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the result or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization." The yield of any provide size of 1 and y may have a mathematical on a mathematical and a mathematica agronomic research and experience, they DO NOT GUARANTEE the achievement of satisfactory performance. C Copyright 1994 A & L WESTERN LABORATORIES, INC.

University of Nevada Cooperative Extension

Mike Buttress, CPAg A & L WESTERN LABORATORIES, IN

	Expressed as Ece, dS/m, or mho/cm	Plant response
	0 - 2	Negligible
	2 - 4	Very sensitive plants affected
	4 – 8	Many plants affected
	8 – 16	Only tolerant plants survive and grow
5.55	≻16	Very few (highly tolerant) plants can survive and grow
ΓĽ.	۲ O'(Callaghan 10/24/2017

University of Nevada Cooperative Extensiom

Salinity of fertilizers

http://bulletin.ipm.illinois.edu/print.php ?id=1305

Soluble fertilizers are soluble because they are salts

 If we are not careful, we could increase the salinity of our soil by fertilizing our plants!

Laboratories

- May give recommendations for fertilizer applications
- Nitrogen recommendations are usually for N
- Not nitrate, not ammonium, not urea
 Important to know how much N is in the fertilizer.

Examine Fertilizer Labels

Cooperative Extensiom

1

Plant food?

Relative amounts of NPK

Cooperative Extensiom

Fernilzers

an an o	DR	Q'S®		
VEG	ETABLE	Charles and the second s	TO FO	DOD
VL.	6-10-6 with	soli condi	tioners	
	GUARA Total Nitrogen (N)	NTEED ANALYSI	5.0%	
	4.69% ammon 0.20% waters	oluble organic nitrol	gen	100
	1.11% water in	soluble organic nit		6
A	oluble Potash (K ₂ O)	₂ O ₃)		6
	Coluble Potash (K ₂ O) Calcium (Ca)			Calles State
S	Calcium (Ca)		1.5%	Car and
I	on (Fe)		0.15%	
IN	langanese (Min)		0 15%	-
Dorwood	from blood meal 00	le meal, animorno	in prior inc	sucrate,
sulfate o	from: blood meal, both of potash, gypsum, iron cophyllum nodosum),	sucrate, mangane	ese sucrate, Zine	stralis).
kelp (As	of potash, gypsum, iror cophyllum nodosum),	Australian Seagras	SS (POSICIAL	
the second se	HUMUGENEOUS		off at the	in a least
The smart	HOMOGENEOUS / CO safe way to feed your p regetable & Tomato For rs: blood meal, bone	plants and bring you	ination of unique	Australian
OR. Q's" V	egetable & Tomato Pol	meal, kelp (Ascoph	yllum nodosum	
Seagrass	safe way to feed your p regetable & Tomato For s: blood meal, bone (Posidonia Australis), a confident that DR. Q's	nd natural aged com	Trand works bet	ter the 0.9
We are so other ferti return it fe	Posidonia Australis), a confident that DR. Q's ^e lizer of it's type on the more a full refund	Vegetable & Tomato barket, that if for any	reason you are f	0000
'Callaghan	10/24/2017	7		See.
Callaynan				

University of Nevada Cooperative Extension

N

O'Callaghan

Concentrate Succulent Formula

- Feeds through roots as
- you water.
- Excellent for transplantingO'Callaghan
- repotting and rooting.

Net 4 fl oz ()

Equivalences of fertilizer materials

But watch out for some curious readings!

Questions?

Pre-assessment

- (select one) Two parts per million of boron is (essential/toxic) to many plants
- 2. Tip burn indicates (choose one)
 - a) iron deficiency
 - b) excess water
 - c) excess phosphorus
 - d) insufficient calcium

3. (true or false) Nitrogen promotes plant disease

Cooperative Extension

p. 2

&

 4. (true or false) Potassium deficiency may be confused with salt burn
 5. Two nutrients (there are several) required for healthy leaves are:

Post-assessment

- (select one) Two parts per million of boron is (essential/toxic) to many plants
- 2. Tip burn indicates (choose one)
 - a) iron deficiency
 - b) excess water
 - c) excess phosphorus
 - d) insufficient calcium

3. (true or false) Nitrogen promotes plant disease

Cooperative Extension

p. 2

&

 4. (true or false) Potassium deficiency may be confused with salt burn
 5. Two nutrients (there are several) required for healthy leaves are:

Practical exercises

Fertilizers If we have time

O'Callaghan

Using <u>18-6-12</u> fertilizer to provide 1 lb. of total N per 1000 sq. ft. of area. The area is 7,000 sq. ft. How much to fertilize it?

(Area to be fertilized) x (recommended rate of N) = Total lbs. of N needed (7,000 sq. ft.) x (1 lb. N per 1000 sq ft) = <u>7 lbs. N needed</u>

O'Callaghan

ч

Calculations

(lbs. nutrient) / (% nutrient in analysis)=
 lbs. of fertilizer needed

(7 lbs. N)/(.18N/lb. of fertilizer) = 38.9 lbs. of fertilizer

~ 39 lbs. of 18-6-12 to supply 1 lb. N per 1000 sq. ft. on 7000 sq. ft.

Same calculation can determine how much of ANY fertilizer to purchase to apply ANY nutrient if you know:

- area (in sq. ft.) to be treated,
- fertilizer analysis and
- recommended nutrient application rate

University of Nevada Cooperative Extension O'Callaghan

◆1 acre = 43,560 ft² ◆71,949 ft² ◆1.65 acres

O'Callaghan

13

Lab analysis report

 \bullet N low $\bullet P ok$ \bullet K low ♦ pH high \bullet Ca ok \bullet Mg ok Need to increase N & K

M

Analysis recommendations/1000 ft² 8 lb* ◆ KNO₃ 13-0-44 ◆ CH₄N₂0 37-0-0 19 S 5 lb S coated urea - Every 2 - 3 months ♦ General Purpose 16-6-8 6 lb – early fall & spring - Instead of scu *Note: KNO₃ has equivalent of 1.8 lb. of lime per lb. of N <u>ا</u>لأز University of Nevada

Cooperative Extension

Calculation

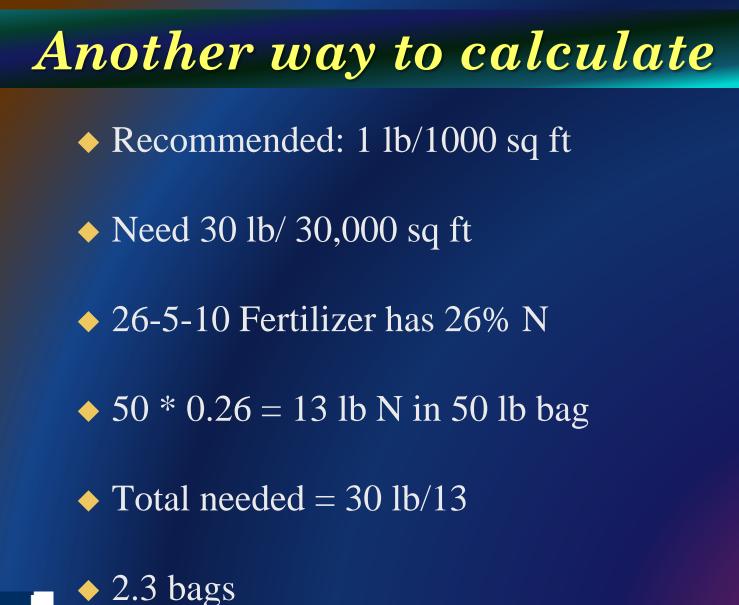
How much N would be added if both KNO₃ and SCU were applied? \bullet KNO₃ = 13% N - 8 lbs. -8*0.13 = 1.04 lbs. N \bullet CH₄N₂0 = 37% N - 5 lbs. -5*0.37 = 1.85 N

University of Nevada Cooperative Extension

 $\mathbb{N} \rightarrow 1.04 + 1.85 = 2.89$ lbs. N applied

How many 50-lb bags of 26-5-10 needed to fertilize a 30,000 sq ft lawn at 1.0 lb nitrogen per 1000 sq ft?

50-lb bag of 26-5-10 fertilizer covers 13,200 sq ft at 1.0 lb nitrogen per 1000 sq ft, determine how many times 13,200 goes into 30,000.


30,000 ÷ 13,200 = 2.3 bags of 26-5-10 will cover 30,000 sq ft.

Cooperative Extension

O'Callaghan

University of Nevada Cooperative Extension O'Callaghan

O'Callaghan

Calculations

Remember - water weighs 8.8 lb/gal.

- Grade or analysis is given on a weight % basis, not per gallon
- Must know weight/gallon of material (label)
- \diamond 10 34 0 weighs 11.4 pounds per gallon
- 11.4 × .10 = 1.14 pounds nitrogen /gallon 11.4 × .34 = 3.88 pounds phosphate /gallon

University of Nevada Cooperative Extension

Different fertilizers have different weights

"The Classic" (liquid fertilizer solution) **On Label** ◆18 -3- 6 liquid fertilizer \diamond Weight / gallon = 10.58 lbs $\diamond pH = 9$ ♦ 1 gallon contains 1.9 lbs N Equivalent to 573 lbs CaCO3 per ton liming effect) M

University of Nevada Cooperative Extension

Turf conversion trees that tolerate well:

Pine species

Palm species

- Acacia, Chilopsis, Prosopis, Parkinsonia, Sophora and related plants (desert species!)
- Brachychiton species (bottle tree)
- Eucalyptus species
- Gleditisia species (locust)
- ♦ Olea
 - Pistacia species

University of Nevada Cooperative Extension

Sensitive to turf conversion

Albizia (silk tree) Ash species Eriobotrya (loquat) ◆Ligustrum Melia (chinaberry, persian lilac) Morus (mulberry)

University of Nevada Cooperative Extension

M

Sensitive (cont)

Most fruit & flowering fruit trees, e.g.: ♦ Malus (apple) Prunus (plum) Pyrus (pear) Platanus species Populus species Robinia species (black locust) Salix (weeping willow) species M

University of Nevada Cooperative Extension